Abstract

In the context of managing distributed energy resources (DERs) within distribution networks (DNs), this work focuses on the task of developing local controllers. We propose an unsupervised learning framework to train functions that can closely approximate optimal power flow (OPF) solutions. The primary aim is to establish specific conditions under which these learned functions can collectively guide the network towards desired configurations asymptotically, leveraging an incremental control approach. The flexibility of the proposed methodology allows to integrate fairness-driven components into the cost function associated with the OPF problem. This addition seeks to mitigate power curtailment disparities among DERs, thereby promoting equitable power injections across the network. To demonstrate the effectiveness of the proposed approach, power flow simulations are conducted using the IEEE 37-bus feeder. The findings not only showcase the guaranteed system stability but also underscore its improved overall performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.