Abstract

This paper focuses on power distribution networks featuring distributed energy resources (DERs), and develops controllers that drive the DER output powers to solutions of time-varying AC optimal power flow (OPF) problems. The design of the controllers is grounded on primal-dual-type methods for regularized Lagrangian functions, as well as linear approximations of the AC power-flow equations. Convergence and OPF-solution-tracking capabilities are established while acknowledging: i) communication-packet losses, and ii) partial updates of control signals. The latter case is particularly relevant since it enables an asynchronous operation of the controllers where the DER setpoints are updated at a fast time scale based on local voltage measurements, and information on the network state is utilized if and when available, based on communication constraints. As an application, the paper considers distribution systems with a high penetration level of photovoltaic systems, and demonstrates that the proposed framework provides fast voltage-regulation capabilities, while enabling the near real-time pursuit of AC OPF solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.