Abstract
Group re-identification (G-ReID) aims to correctly associate groups with the same members captured by different cameras. However, supervised approaches for this task often suffer from the high cost of cross-camera sample labeling. Unsupervised methods based on clustering can avoid sample labeling, but the problem of member variations often makes clustering unstable, leading to incorrect pseudo-labels. To address these challenges, we propose an adaptive clustering-driven progressive learning approach (ACPL), which consists of a group adaptive clustering (GAC) module and a global dynamic prototype update (GDPU) module. Specifically, GAC designs the quasi-distance between groups, thus fully capitalizing on both individual-level and holistic information within groups. In the case of great uncertainty in intra-group members, GAC effectively minimizes the impact of non-discriminative features and reduces the noise in the model's pseudo-labels. Additionally, our GDPU devises a dynamic weight to update the prototypes and effectively mine the hard samples with complex member variations, which improves the model's robustness. Extensive experiments conducted on four popular G-ReID datasets demonstrate that our method not only achieves state-of-the-art performance on unsupervised G-ReID but also performs comparably to several fully supervised approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.