Abstract
The neutron diffusion equation is often used to perform core-level neutronic calculations. It consists of a set of second-order partial differential equations over the spatial coordinates that are, both in the academia and in the industry, usually solved by discretizing the neutron leakage term using a structured grid. This work introduces the alternatives that unstructured grids can provide to aid the engineers to solve the neutron diffusion problem and gives a brief overview of the variety of possibilities they offer. It is by understanding the basic mathematics that lie beneath the equations that model real physical systems; better technical decisions can be made. It is in this spirit that this paper is written, giving a first introduction to the basic concepts which can be incorporated into core-level neutron flux computations. A simple two-dimensional homogeneous circular reactor is solved using a coarse unstructured grid in order to illustrate some basic differences between the finite volumes and the finite elements method. Also, the classic 2D IAEA PWR benchmark problem is solved for eighty combinations of symmetries, meshing algorithms, basic geometric entities, discretization schemes, and characteristic grid lengths, giving even more insight into the peculiarities that arise when solving the neutron diffusion equation using unstructured grids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.