Abstract

AbstractThis paper deals with the numerical discretization of two‐dimensional depth‐averaged models with porosity. The equations solved by these models are similar to the classic shallow water equations, but include additional terms to account for the effect of small‐scale impervious obstructions which are not resolved by the numerical mesh because their size is smaller or similar to the average mesh size. These small‐scale obstructions diminish the available storage volume on a given region, reduce the effective cross section for the water to flow, and increase the head losses due to additional drag forces and turbulence. In shallow water models with porosity these effects are modelled introducing an effective porosity parameter in the mass and momentum conservation equations, and including an additional drag source term in the momentum equations. This paper presents and compares two different numerical discretizations for the two‐dimensional shallow water equations with porosity, both of them are high‐order schemes. The numerical schemes proposed are well‐balanced, in the sense that they preserve naturally the exact hydrostatic solution without the need of high‐order corrections in the source terms. At the same time they are able to deal accurately with regions of zero porosity, where the water cannot flow. Several numerical test cases are used in order to verify the properties of the discretization schemes proposed. Copyright © 2009 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.