Abstract

A tidal bore is a wave propagating upstream as the tidal flow turns to rising. It forms during spring tide conditions when the flood tide is confined to a narrow funneled channel. To date, theoretical and numerical studies rely upon physical experiments to validate the developments, but the experimental data are limited mostly to visual observations and sometimes free-surface measurements. Herein turbulent velocity measurements were obtained in a large-size laboratory facility with a fine spatial and temporal resolution. The instantaneous velocity measurements showed rapid flow deceleration at all vertical elevations, and large fluctuations of all velocity components were recorded beneath the bore and secondary waves. A comparison between undular (nonbreaking) and breaking bores suggested some basic differences. In an undular bore, large velocity fluctuations were recorded beneath the first wave crest and the secondary waves showing a long-lasting effect after the bore passage. In a breaking bore, some large turbulent stresses were observed next to the shear zone in a region of high velocity gradients, while some transient flow recirculation was recorded next to the bed. The effects of bed roughness were tested further. The boundary friction contributed to some wave attenuation and dispersion, and the free-surface data showed some agreement with the wave dispersion theory for intermediate gravity waves. The instantaneous velocity data showed however a significant effect of the boundary roughness on the velocity field next to the boundary (z/do<0.2) for both undular and breaking bores. Overall the findings were consistent with field observations of tidal bores and highlighted the significant impact of undular (nonbreaking) bores on natural systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call