Abstract

A tidal bore is an unsteady flow motion generated by the rapid water level rise at the river mouth during the early flood tide under macrotidal and appropriate bathymetric conditions. This paper presents a study that physically investigates the turbulent properties of tidal bores. Results from some experimental measurements of free-surface fluctuations and turbulent velocities conducted on smooth and rough beds are reported. The free-surface measurements were conducted with Froude numbers of 1–1.7. Both undular and breaking bores were observed. Using an ensemble-averaging technique, the free-surface fluctuations of breaking tidal bores are characterized. Immediately before the roller, the free-surface curves gradually upwards. The passage of the bore roller is associated with some large water elevation fluctuations; the largest free-surface fluctuations are observed during the first half of the bore roller. The turbulent velocity measurements were performed at several vertical elevations during and shortly after the passage of breaking bores. Both the instantaneous and ensemble-averaged velocity data highlight a strong flow deceleration at all elevations during the bore passage. Close to the bed, the longitudinal velocity component becomes negative immediately after the roller passage, implying the existence of a transient recirculation. The height and duration of the transient are a function of the bed roughness, with a higher and longer recirculation region above the rough bed. The vertical velocity data presented some positive, upward motion beneath the front with increasing maximum vertical velocity with increasing distance from the bed. The transverse velocity data show some large fluctuations with nonzero ensemble average after the roller passage that highlight some intense secondary motion advected behind the bore front.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call