Abstract

This study is focused on the problem of MHD heat and mass transfer by mixed convection flow in the forward stagnation region of a rotating sphere in the presence of heat generation and chemical reaction effects. The surface of the sphere is maintained at constant fluid temperature and species concentration. The governing equations of the problem are converted into ordinary differential equations by using suitable similarity transformations. Two cases are considered, namely, constant wall temperature and mass (CWTM) and constant heat and mass fluxes (CHMF). The obtained self-similar equations for both cases are solved numerically using an efficient iterative implicit finite-difference method. The numerical results are compared with previously published results on special cases of the problem and found to be in excellent agreement. The obtained results are displayed graphically to illustrate the influence of the different physical parameters on the velocity components in x- and y-directions, temperature, and concentration profiles as well as the local surface shear stresses and local heat and mass transfer coefficients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call