Abstract

This paper investigates the Magnetohydrodynamics (MHD) convective flow over a cone with the influence of viscous dissipation, variable viscosity, chemical reaction and variable thermal conductivity effects. Related equations are tackled by the Homotopy analysis method (HAM). The impacts of physical variables on concentration, velocity and temperature are presented through numerical tables and graphs. It is noticed that the heat transfer rate (Nusselt number) increases against Prandtl number. Similarly, the mass transfer rate (Sherwood number) increases against Schmidt number. Also, it is seen that skin friction in tangential and azimuthal direction increases against the buoyancy forces ratio parameter. Current results are validated with previous literature work.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call