Abstract

This paper presents a model of nonisothermal blood flow through a diseased arterial segment due to the presence of stenosis and thrombosis. The rheological properties of the blood in the annulus are captured by utilizing micropolar fluid model. The equation describing the blood flow and heat transfer is developed under the assumption that stenosis growth into the lumen of the artery is small as compared to the average radius of the artery. Biological processes like intimal proliferation of cells or changes in artery caliber may be activated by small growths that cause moderate stenotic blockages. Closed-form solutions for temperature, velocity, resistance impedance and wall shear stress are obtained and then utilized to estimate the impact of various physical parameters on micropolar blood flow. Graphs are plotted to illustrate variations in temperature, velocity, shear stress at the wall and resistance impedance against different controlling parameters. The results are also validated via the bvp4c approach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call