Abstract
The present study focuses the effects of double dispersion, non-uniform heat source/sink and higher order chemical reaction on unsteady, free convective, MHD Casson fluid flow over a vertical cone and flat plate saturated with porous medium. The extensively validated and unconditionally stable numerical solutions are obtained for the governing equations of two dimensional boundary layer flow by using the finite difference scheme of Crank-Nicolson type. The behavior of velocity, temperature and concentration distributions for various controlling parameters of this problem are graphically illustrated and discussed in detail. The average skin friction, Nusselt number and Sherwood number for sundry parameters are presented in tables. Results indicate that an increase in Casson fluid parameter is found to decelerate fluid flow by increasing the plastic dynamic viscosity whereas it enhances the shear stress in the flow regime. The temperature-dependent heat source/sink plays a vital role on controlling the heat transfer however the surface-dependent heat source/sink also has notable influence on the heat transfer characteristics. It is to be noted that higher order chemical reaction has the tendency to dilute the influence of chemical reaction parameter on the species concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering Research in Africa
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.