Abstract

The intention of this communication is to explore the characteristics of electromagnetohydrodynamics on the fluid transport properties of a chemically reacting Casson fluid with two types of geometries. Formulations consist of salient features of radiative heat transfer, Lorentz force, and chemical reaction. This model is constituted with governing equations which are solved numerically by an efficient finite difference scheme of Crank-Nicolson type. Impact of pertinent parameters like Casson fluid, electrical field, Hartmann number, and chemical reaction is observed through graphs. The outcomes of surface shear stress, rate of heat, and mass transfers are presented through tables. Results enable us to state that larger electrical field decelerates the Casson fluid flow. Influence of the magnetic field on mean surface shear stress is more significant in the flow on a plate than that of cone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.