Abstract

The present analysis deals with an unsteady magnetohydrodynamic flow of Eyring-Powell nanofluid over an inclined permeable stretching sheet. Effects of thermal radiation, Joule heating, and chemical reaction are considered. The effects of Brownian motion and thermophoresis on the flow over the permeable stretching sheet are discussed. Using Runge-Kutta fourth-order along with shooting technique, numerical and graphical results were obtained for the governing flow equations. The influence of various parameters on flow variables have been examined in detail. The results reveal that the temperature of the fluid enhanced with increasing Brownian and thermophoresis parameters. The increase of fluid velocity with the local Grashof number, the solutal Grashof number has been noticed. Further, the nanoparticles concentration decreased for a given increase in Brownian motion and chemical reaction parameters, while it increased with an increase in the thermophoresis parameter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.