Abstract
The problem of heat transfer in the unsteady free convection flow over a continuous moving vertical sheet in an ambient fluid has been investigated. Both constant surface temperature and constant surface heat flux conditions have been considered. The nonlinear coupled partial differential equations governing the flow have been solved numerically using the Keller box method and the Nakamura method which both give closely similar solutions. The results indicate that the cooling rate of the sheet can be enhanced by increasing the buoancy parameter or the velocity of the sheet. It is found that a better cooling performance could be achieved by using a liquid as a cooling medium rather than a gas. The overshoot in the velocity occurs near the surface when the buoyancy parameter exceeds a certain critical value.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have