Abstract
ABSTRACT Nanofluid is one of the significant developments for having an efficient heat transport process. Its implementation in a non-coaxial rotating system has benefited from designing a mixer machine with two stirrer blades, cooling fan, and jet engines. This study analytically investigates the free convection of unsteady non-coaxial rotating nanofluid flow through a moving disk. The suspension of single-wall or multi-wall carbon nanotubes in water is known as the nanofluid in this study. The fluid motion is affected by the effects of rotation and buoyancy forces. Using suitable dimensionless variables, the dimensional coupled partial differential of momentum and energy equations along with their initial and moving boundary conditions are converted into the dimensionless form. The expressions for temperature and velocity profiles are obtained by solving governing equations using Laplace transform method. The validity of obtained solution is confirmed by having a good agreement when comparing present results with the published result. The results show that the insertion of CNTs particles into the rotating water causes the temperature and velocity profiles to increase. The amount of heat transferred by SWCNTs is greater than MWCNTs. Increasing CNTs particles has descended both primary and secondary skin friction but increase Nusselt number. Further analysis with the help of pictorial discussion for the fluid flows and heat transfer under the influences of nanoparticle volume fraction, Grashof number, the amplitude of disk, and time is carried out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.