Abstract

Turbulent flow separation in over-expanded rocket nozzles is investigated experimentally in a sub-scale model nozzle fed with cold air and having a thrust-optimized contour. Depending upon the pressure ratio either a free shock separation (FSS) or a restricted shock separation (RSS) is observed with a significant hysteresis between these two flow regimes. It is shown that the RSS configuration may involve several separated regions. Analysis of wall pressure fluctuations give quantitative information on the fluctuating pressure field directly connected with the occurrence of significant side loads. Direct measurements of the evolution of the side loads with respect to the pressure ratio show the occurrence of three distinct peaks which are explained by the wall pressure fluctuations measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.