Abstract

Turbulent flow separation in over-expanded rocket nozzles is investigated numerically in a sub-scale parabolic nozzle fed with cold nitrogen. Depending upon the feeding to ambient pressure ratio either a free shock separation or a restricted shock separation is computed, with a significant hysteresis between these two flow regimes. This hysteresis was also found in experimental tests with the same nozzle geometry. The present study is mainly focused on the transition between the two shock separation patterns. The analysis of the numerical solutions aims to provide clues for the explanation of the hysteresis cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.