Abstract

SummaryIn order to improve network scalability and fault tolerance, the distributed sensor networks are desirable. However, the distributed state estimation becomes challenging when some sensors have insufficient information due to restricted observability, and/or have imparity information due to unequal measurement‐noise covariances. Centralized summation information‐fusion (CSI) model is presented which performs weighted least‐squares estimation for all measurement information to achieve the optimal centralized state estimation. The CSI model revises the initialization and covariance propagation in the original information‐weighted consensus filter (ICF). Since centralized information fusion is a summation mode and is approached by the average consensus protocol, all the covariances involved in the CSI model contain the information regarding the total number of nodes. The artificially preset initial values are considered as measurement information and fused in accordance with the CSI model. By combining the CSI model with unscented transform, distributed unscented summation information‐weighted consensus filter (USICF) is proposed. USICF realizes the nonlinear estimation in the context of highly incomplete information. Theoretical analysis and experimental verification showed that USICF achieves better performance than UICF that is based on ICF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.