Abstract

Cooperative tracking plays a key role in space situation awareness for scenarios with a limited number of observations or poor performance of a single sensor or both. To use the information from multiple networked sensors, both centralized and decentralized fusion algorithms can be used. Compared with centralized fusion algorithms, decentralized fusion algorithms are more robust in terms of communication failure and computational burden. One popular distributed estimation approach is based on the average consensus that asymptotically converges to the estimate by multiple exchanges of neighborhood information. Consensus-based algorithms have become popular in recent years due to the fact that they do not require global knowledge of the network or routing protocols. The main contributions of this paper are 1) an effective space-based object (SBO) measurement model that considers the geometric relation of the Sun, the space object, the SBO sensor, and the Earth; 2) two consensus-based filters, the information-weighted consensus filter (ICF) and the Kalman consensus filter (KCF), are used to track space objects by using multiple SBO sensors; and 3) the cubature rule-embedded ICF (Cub-ICF) and KCF (Cub-KCF) are proposed to improve the accuracy of the ICF and KCF. Three scenarios that contain one or two space objects and four SBOs are used to test proposed algorithms. We also compare the consensus-based space object tracking algorithms with the centralized extended information filter (centralized EIF) and the centralized cubature information filter (centralized Cub-IF). The simulation results indicate that 1) cooperative space object tracking algorithms provide better results than algorithms using a single sensor, 2) the consensus-based tracking algorithms can achieve performance close to that of the centralized algorithms, and 3) the Cub-ICF and Cub-KCF outperform the conventional ICF and KCF for a challenging space object tracking case shown in the paper. The proposed Cub-ICF and Cub-KCF algorithms should facilitate the application of using consensus-based filters for cooperative space object tracking.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.