Abstract

Unsaturated mannuronate oligosaccharide (MOS) is an enzymatic depolymerization product from alginate-derived polymannuronate (PM). In this study, we investigated for the first time the potential therapeutic effect of MOS on Alzheimer’s disease (AD) and its molecular mechanism in N2a-sw cells and 3×Tg-AD primary cortex neurons. Our results showed that MOS ranges from mannuronate dimer to mannuronate undecamer (M2-M11) with an unsaturated nonreducing terminal structure and with a double bond and 1,4-glycosidic linkages. It significantly inhibited the aggregation of amyloid-β (Aβ)1-42 oligomer, decreased expression of Aβ1-42 and reduced levels of amyloid precursor protein (APP) and BACE1. It promoted the autophagy, which involves the inactivation of mTOR signaling pathway and the facilitation of the fusion of autophagosomes and lysosomes. Finally, autophagy inhibitors blocked MOS’ anti-AD actions, confirming the involvement of autophagy. In conclusion, MOS from seaweed alginate might be a promising nutraceutical or natural medicine for AD therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call