Abstract

Processing of amyloid precursor protein (APP) is a well acknowledged central pathogenic mechanism in Alzheimer disease. However, influences of age-associated cellular alterations on the biochemistry of APP processing have not been studied in molecular detail so far. Here, we report that processing of endogenous APP is down-regulated during the aging of normal human fibroblasts (IMR-90). The generation of intracellular APP cleavage products C99, C83, and AICD gradually declines with increasing life span and is accompanied by a reduced secretion of soluble APP (sAPP) and sAPPalpha. Further, the maturation of APP was reduced in senescent cells, which has been shown to be directly mediated by age-associated increased cellular cholesterol levels. Of the APP processing secretases, protein levels of constituents of the gamma-secretase complex, presenilin-1 (PS1) and nicastrin, were progressively reduced during aging, resulting in a progressive decrease in gamma-secretase enzymatic activity. ADAM10 (a disintegrin and metalloprotease 10) and BACE (beta-site APP-cleaving enzyme) protein levels exhibited no age-associated regulation, but interestingly, BACE enzymatic activity was increased in aged cells. PS1 and BACE are located in detergent-resistant membranes (DRMs), well structured membrane microdomains exhibiting high levels of cholesterol, and caveolin-1. Although total levels of both structural components of DRMs were up-regulated in aged cells, their particular DRM association was decreased. This age-dependent membrane modification was associated with an altered distribution of PS1 and BACE between DRM and non-DRM fractions, very likely affecting their APP processing potential. In conclusion, we have found a significant modulation of endogenous APP processing and maturation in human fibroblasts caused by age-associated alterations in cellular biochemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.