Abstract

In this study, we define unrestricted Pell and Pell – Lucas hyper-complex numbers. We choose arbitrary Pell and Pell – Lucas numbers for the coefficients of the ordered basis 〖{e〗_0,e_1,⋯,e_(N-1)} of hyper-complex 2^N-ons where N∈{0,1,2,3,4} and call these hyper-complex numbers unrestricted Pell and Pell-Lucas 2N-ons. We give generating functions and Binet formulas for these type of hyper-complex numbers. We also obtain some generalization of well – known identities such as Catalan’s, Cassini’s and d’Ocagne’s identities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.