Abstract
Spinal cord injury (SCI) is a complex neurodegenerative pathology that consistently harbours a poor prognostic outcome. At present, there are few therapeutic strategies that can halt neuronal cell death and facilitate functional motor recovery. However, recent studies have highlighted the Wnt pathway as a key promoter of axon regeneration following central nervous system (CNS) injuries. Emerging evidence also suggests that the temporal dysregulation of Wnt may drive cell death post-SCI. A major challenge in SCI treatment resides in developing therapeutics that can effectively target inflammation and facilitate glial scar repair. Before Wnt signalling is exploited for SCI therapy, further research is needed to clarify the implications of Wnt on neuroinflammation during chronic stages of injury. In this review, an attempt is made to dissect the impact of canonical and non-canonical Wnt pathways in relation to individual aspects of glial and fibrotic scar formation. Furthermore, it is also highlighted how modulating Wnt activity at chronic time points may aid in limiting lesion expansion and promoting axonal repair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.