Abstract
Krabbe disease (KD) is a rare demyelinating disorder characterized by demyelination caused by mutations in the GALC gene, resulting in toxic accumulation of psychosine. Psychosine has been identified as detrimental to oligodendrocytes, leading to demyelination through diverse hypothesized pathways. Reducing demyelination is essential to maintain neurological function in KD; however, therapeutic interventions are currently limited. Acetylcholinesterase inhibitors (AChEi) are commonly used for symptomatic management of Alzheimer's Disease and are suggested to have potential disease-modifying effects, including regulating myelin state. In particular, donepezil, an AChEi, has demonstrated promising effects in cellular and animal models, including promotion of the expression of myelin-related genes and reduction of glial cell reactivity. This drug also acts as an agonist for sigma-1 receptors (Sig-1R), which are implicated in demyelination diseases. In the context of drug repurposing, here, we demonstrate that administration of donepezil has protective effects in the twitcher mouse model of KD. We provide data showing that donepezil preserves myelin and reduces glial cell reactivity in the brains of twitcher mice. Moreover, donepezil also improves behavioral phenotypes and increases lifespan in twitcher animals. These findings suggest that donepezil, with its dual activity as an AChE inhibitor and Sig-1R agonist, may hold promise as a therapeutic candidate for demyelinating diseases, including KD.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.