Abstract

To investigate the enhancing effect of Mn on the performance of simultaneous catalytic oxidation of AsH3 and PH3 by CuO-Al2O3 in a reducing atmosphere under micro-oxygen conditions, Cu-Mn modified γ-Al2O3 catalysts were prepared. The characteristics of the catalysts showed that Mn reduced the crystallinity of the active CuO component, increased the number of oxygen vacancies and acidic sites on the catalyst surface, enhanced the mobility of surface oxygen, and the interaction between copper and manganese promoted the redox cycling ability of the catalysts and improved their oxidation performance, which increased the conversion frequency (TOF) by 2.54 × 10−2 to 3.07 × 10−2 sec−1. On the other hand, the introduction of Mn reduced the production of phosphate and As2O3 on the catalyst surface by 30.96% and 44.9%, which reduced the coverage and inerting of the active sites by phosphate and As2O3, resulting in an 8 hr (6 hr) improvement in the stability of PH3 (AsH3) removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.