Abstract

The growth of colloidal nanoparticles is simultaneously driven by kinetic and thermodynamic effects that are difficult to distinguish. We have exploited in situ scanning transmission electron microscopy in liquid to study the growth of Au nanoplates by radiolysis and unravel the mechanisms influencing their formation and shape. The electron dose provides a straightforward control of the growth rate that allows quantifying the kinetic effects on the planar nanoparticles formation. Indeed, we demonstrate that the surface-reaction rate per unit area has the same dose-rate dependent behavior than the concentration of reducing agents in the liquid cell. Interestingly, we also determine a critical supply rate of gold monomers for nanoparticle faceting, corresponding to three layers per second, above which the formation of nanoplates is not possible because the growth is then dominated by kinetic effects. At lower electron dose, the growth is driven by thermodynamic and the formation and shape of nanoplates are directly related to the twin-planes formed during the growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.