Abstract
Wastewater treatment plants (WWTPs) have been identified as one of the reservoirs of antibiotics. Although nitrifying bacteria have been reported to be capable of degrading various antibiotics, there are very few studies investigating long-term effects of antibiotics on kinetic and microbial responses of nitrifying bacteria. In this study, cephalexin (CFX) and sulfadiazine (SDZ) were selected to assess chronic impacts on nitrifying sludge with stepwise increasing concentrations in two independent bioreactors. The results showed that CFX and SDZ at an initial concentration of 100 μg/L could be efficiently removed by enriched nitrifying sludge, as evidenced by removal efficiencies of more than 88% and 85%, respectively. Ammonia-oxidizing bacteria (AOB) made a major contribution to the biodegradation of CFX and SDZ via cometabolism, compared to limited contributions from heterotrophic bacteria and nitrite-oxidizing bacteria. Chronic exposure to CFX (≥30 μg/L) could stimulate ammonium oxidation activity in terms of a significant enhancement of ammonium oxidation rate (p < 0.01). In contrast, the ammonium oxidation activity was inhibited due to exposure to 30 μg/L SDZ (p < 0.01), then it recovered after long-term adaption under exposure to 50 and 100 μg/L SDZ. In addition, 16S rRNA gene amplicon sequencing revealed that the relative abundance of AOB decreased distinctly from 23.8% to 28.8% in the control phase (without CFX or SDZ) to 14.2% and 10.8% under exposure to 100 μg/L CFX and SDZ, respectively. However, the expression level of amoA gene was up-regulated to overcome this adverse impact and maintain a stable and efficient removal of both ammonium and antibiotics. The findings in this study shed a light on chronic effects of antibiotic exposure on kinetic and microbial responses of enriched nitrifying sludge in WWTPs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.