Abstract

The discovery of graphite transition to transparent and superhard carbons under room-temperature compression (Takehiko, et al., Science, 1991, 252, 1542 and Mao, et al., Science, 2003, 302, 425) launched decades of intensive research into carbon's structural polymorphism and relative phase transition mechanisms. Although many possible carbon allotropes have been proposed, experimental observations and their transition mechanisms are far from conclusive. Three longstanding issues are: (i) the speculative structures inferred by amorphous-like XRD peaks, (ii) sp2 and sp3 bonding mixing, and (iii) the controversies of transition reversibility. Here, by utilizing the stochastic surface walking method for unbiased pathway sampling, we resolve the possible atomic structure and the lowest energy pathways between multiple carbon allotropes under high pressure. We found that a new transition pathway, through which graphite transits to a highly disordered phase by shearing the boat architecture line atoms out of the graphite (001) plane upward or downward featuring without the nuclei core, is the most favorable. This transition pathway facilitates the generation of a variety of equally favorable carbon structures that are controlled by the local strain and crystal orientation, resembling structural disordering. Our results may help to understand the nature of graphite under room temperature compression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call