Abstract

The human cytochrome P450 (CYP) CYP3A4 and CYP3A5 enzymes metabolize more than half of marketed drugs. They share high structural and substrate similarity and are often studied together as CYP3A4/5. However, CYP3A5 preferentially metabolizes several clinically prescribed drugs, such as tacrolimus. Genetic polymorphisms in CYP3A5 makes race-based dosing adjustment of tacrolimus necessary to minimize acute rejection after organ transplantation. Moreover, the differential tissue distribution and expression levels of CYP3A4 and CYP3A5 can aggravate toxicity during treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.