Abstract
Abstract Despite significant evidence suggesting that intermediate- and high-mass stars form in clustered environments, how stars form when the available resources are shared is still not well understood. A related question is whether the initial mass function (IMF) is in fact universal across galactic environments, or whether it is an average of IMFs that differ, for example, in massive versus low-mass molecular clouds. One of the long-standing problems in resolving these questions and in the study of young clusters is observational: how to accurately combine multiwavelength data sets obtained using telescopes with different spatial resolutions. The resulting confusion hinders our ability to fully characterize clustered star formation. Here we present a new method that uses Bayesian inference to fit the blended spectral energy distributions and images of individual young stellar objects (YSOs) in confused clusters. We apply this method to the infrared photometry of a sample comprising 70 Spitzer-selected, low-mass (M cl < 100 M ⊙) young clusters in the galactic plane, and we use the derived physical parameters to investigate how the distribution of YSO masses within each cluster relates to the total mass of the cluster. We find that for low-mass clusters this distribution is indistinguishable from a randomly sampled Kroupa IMF for this range of cluster masses. Therefore, any effects of self-regulated star formation that affect the IMF sampling are likely to play a role only at larger cluster masses. Our results are also compatible with smoothed particle hydrodynamics models that predict a dynamical termination of the accretion in protostars, with massive stars undergoing this stopping at later times in their evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.