Abstract

The electrochemical reduction of CO has drawn a large amount of attention due to its potential to produce sustainable fuels and chemicals by using renewable energy. However, the reaction’s mechanism is not yet well understood. A major debate is whether the rate-determining step for the generation of multi-carbon products is C-C coupling or CO hydrogenation. This paper conducts an experimental analysis of the rate-determining step, exploring pH dependency, kinetic isotope effects, and the impact of CO partial pressure on multi-carbon product activity. Results reveal constant multi-carbon product activity with pH or electrolyte deuteration changes, and CO partial pressure data aligns with the theoretical formula derived from *CO-*CO coupling as the rate-determining step. These findings establish the dimerization of two *CO as the rate-determining step for multi-carbon product formation. Extending the study to commercial copper nanoparticles and oxide-derived copper catalysts shows their rate-determining step also involves *CO-*CO coupling. This investigation provides vital kinetic data and a theoretical foundation for enhancing multi-carbon product production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.