Abstract

Chuanfangyihao (CFYH) is an effective treatment for acute lung injury (ALI) in clinical practice; however, its underlying mechanism of action remains unclear. Therefore, the aim of the present study was to elucidate the pharmacological mechanism of action of CFYH in ALI through experimental validation. First, a rat model of ALI was established using lipopolysaccharide (LPS). Next, the pathological changes in the lungs of the rats and the pathological damage were scored. The wet/dry weight ratios were measured, and ROS content was detected using flow cytometry. ELISA was used to examine IL-6, TNF-α, IL-1β, IL-18, and LDH levels. Immunohistochemistry was used to detect Beclin-1 and NLRP3 expression. Western blotting was performed to analyze the expression of HMGB1, RAGE, TLR4, NF-κB p65, AMPK, p-AMPK, mTOR, p-mTOR, Beclin-1, LC3-II/I, p62, Bcl-2, Bax, Caspase-3, Caspase-1, and GSDMD-NT. The mRNA levels of HMGB1, RAGE, AMPK, mTOR, and HIF-1α were determined using reverse transcription quantitative PCR. CFYH alleviated pulmonary edema and decreased the expression of IL-6, TNF-α, TLR4, NF-κB p65, HMGB1/RAGE, ROS, and HIF-1α. In addition, pretreatment with CFYH reversed ALI-induced programmed cell death. In conclusion, CFYH alleviates LPS-induced ALI, and these findings provide a preliminary clarification of the predominant mechanism of action of CFYH in ALI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call