Abstract

The discharge process of a nonaqueous Li-O2 battery at the cathode is the direct oxygen reduction reaction (ORR) with the formation of discharge product, e.g., Li2O2, deposits on the cathode surface. The aggressive superoxide intermediate generated during the ORR severely degrades the organic electrolyte and carbon-based cathodes. To avoid the formation of superoxide species and promote the growth of Li2O2 in the electrolyte solution, we employ a soluble cobaltocene [Co(C5H5)2, Cp2Co] as a homogeneous molecule catalyst to boost the discharge performance of Li-O2 batteries. Owing to the unique chemical reactivity of Cp2Co with molecular oxygen, the electrochemistry of the discharge process at the cathode is the (Cp2Co)2II-O22- adduct-mediated process rather than direct electrochemical oxygen reduction, thereby avoiding the formation of aggressive superoxide intermediate. In addition, the strong intermolecular attraction between Cp2Co and the newly formed Li2O2 promotes the solution phase growth of Li2O2, which effectively suppresses electrode passivation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call