Abstract

Epigenetic mechanisms orchestrate a harmonious process of corneal epithelial wound healing (CEWH). However, the precise role of long non-coding RNAs (lncRNAs) as key epigenetic regulators in mediating CEWH remains elusive. Here, we aimed to elucidate the functional contribution of lncRNAs in regulating CEWH. We used a microarray to characterize lncRNA expression profiling during mouse CEWH. Subsequently, the aberrant lncRNAs and their cis-associated genes were subjected to comprehensive Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) and western blot analyses were performed to determine the expression profiles of key markers during CEWH. The in vivo effects of linc17500 on this process were investigated through targeted small interfering RNA (siRNA) injection. Post-siRNA treatment, corneal re-epithelialization was assessed, alongside the expression of cytokeratins 12 and 14 (Krt12 and Krt14) and Ki67. Effects of linc17500 on mouse corneal epithelial cell (TKE2) proliferation, cell cycle, and migration were assessed by multicellular tumor spheroids (MTS), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and scratch-wound assay, respectively. Microarray analysis revealed dysregulation of numerous lncRNA candidates during CEWH. Bioinformatic analysis provided valuable annotations regarding the cis-associated genes of these lncRNAs. In vivo experiments demonstrated that knockdown of linc17500 resulted in delayed CEWH. Furthermore, the knockdown of linc17500 and its cis-associated gene, CDC28 protein kinase regulatory subunit 2 (Cks2), was found to impede TKE2 cell proliferation and migration. Notably, downregulation of linc17500 in TKE2 cells led to suppression of the activation status of Akt and Rb. This study sheds light on the significant involvement of lncRNAs in mediating CEWH and highlights the regulatory role of linc17500 on TKE2 cell behavior. These findings provide valuable insights for future therapeutic research aimed at addressing corneal wound complications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call