Abstract

A bottleneck of microalgae-based techniques for wastewater bioremediation is activity inhibition of microalgae by toxic pollutants. The defense strategies of Chlorella sorokinana against toxic pyridine were studied. Results indicated that pyridine caused photoinhibition and reactive oxygen species overproduction in a concentration-dependent manner. The 50% inhibitory concentration of pyridine (147 mg L-1) destroyed C/N balance, disrupted multiple metabolic pathways of C. sorokinana. In response to pyridine stress, ascorbate peroxidase and catalase activities increased to scavenge reactive oxygen species under pyridine concentrations lower than 23 mg L-1. At higher pyridine concentrations, the activation of calcium signaling pathways and phytohormones represented the predominant defense response. Extracellular polymeric substances increased 3.6-fold in 147 mg L-1 group than control, which interacted with pyridine through hydrophobic and aromatic stacking to resist pyridine entering algal cells. Unraveling the intracellular and extracellular self-defense mechanisms of microalgae against pyridine stress facilitates the development of microalgal-based technology in wastewater bioremediation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.