Abstract

Small RNAs (sRNAs) are major regulators of gene expression in bacteria, exerting their regulation primarily via base pairingwith their target transcripts and modulating translation. Accumulating evidence suggest that sRNAs can also affect the stability of their target transcripts by altering their accessibility to endoribonucleases. Yet, the effects of sRNAs on transcript stability and the mechanisms underlying them have not been studied in wide scale. Here we employ large-scale RNA-seq-based methodologies in the model bacterium Escherichia coli to quantitatively study the functional interaction between a sRNA and an endoribonuclease in regulating gene expression, using the well-established sRNA, GcvB,and the major endoribonuclease, RNase E. Studying single and double mutants of gcvB and rne and analysing their RNA-seq results by the Double Mutant Cycle approach, we infer distinct modes of the interplay between GcvB and RNase E. Transcriptome-wide mapping of RNase E cleavage sites provides further support to the results of the RNA-seq analysis, identifying cleavage sites in targets in which the functional interaction between GcvB and RNase E is evident. Together, our results indicate that the most dominant mode of GcvB-RNase E functional interaction is GcvB enhancement of RNase E cleavage, which varies in its magnitude between different targets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.