Abstract

In an attempt to promote energy saving through the clever control of varying amounts of visible light and solar energy in modern buildings, there has been a surge of interest in the novel design of multifunctional glass windows otherwise known as “smart windows”. The use of chromogenic materials (e.g., tungsten oxides and their alloys) is widespread in this cooling energy technology, and for the case of hexagonal tungsten oxide (h-WO3)-based systems, the overall efficiency is often hindered by the lack of a systematic and fundamental understanding of the interplay of intrinsic charge transfer between the alkali-metal ions and the host h-WO3. In this work, we present a first-principles hybrid density-functional theory investigation of bulk hexagonal tungsten bronzes (i.e., alkali-metal-intercalated h-WO3) and examine the influence of the intercalation chemistry on their thermodynamic stability as well as optoelectronic properties. We find that the introduction of the alkali-metal ion induces a persistent n...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.