Abstract

Electrochromic (EC) smart windows are able to vary their throughput of visible light and solar energy by the application of an electrical voltage and are able to provide energy efficiency and indoor comfort in buildings. Section 1 explains why this technology is important and timely by first outlining today's precarious situation concerning increasing energy use and associated effects on the world's climate, and this section also underscores the great importance of enhancing the energy efficiency of buildings by letting them function more in harmony with the environment—particularly its varying temperature—than is possible with current mainstream technologies. This same chapter also surveys recent work on the energy savings and other benefits that are possible with EC-based technologies. Section 2 then provides some notes on the history of the EC effect and its applications. Section 3 presents a generic design for the oxide-based EC devices that are most in focus for present-day applications and research. This design includes five superimposed layers with a centrally-positioned electrolyte connecting two oxide films—at least one of which having EC properties—and with transparent electrical conductors surrounding the three-layer structure in the middle. It is emphasized that this construction can be viewed as a thin-film electrical battery whose charging state is manifested as optical absorption. Also discussed are six well known hurdles for the implementation of these EC devices, as well as a number of practical constructions of EC-based smart windows. Section 4 is an in-depth discussion of various aspects of EC oxides. It begins with a literature survey for 2007–2013, which updates earlier reviews, and is followed by a general discussion of optical and electronic effects and, specifically, on charge transfer absorption in tungsten oxide. Ionic effects are then treated with foci on the inherent nanoporosity of the important EC oxides and on the possibilities to accomplish further porosity by having suitable thin-film deposition parameters. A number of examples on the importance of the detailed deposition conditions are presented, and Section 4 ends with a presentation of the EC properties of films with compositions across the full tungsten–nickel oxide system. Section 5 is devoted to transparent electrical conductors and electrolytes, both of which are necessary in EC devices. Detailed surveys are given of transparent conductors comprising doped-oxide semiconductors, coinage metals, nanowire meshes and other alternatives, and also of electrolytes based on thin films and on polymers. Particular attention is devoted to electrolyte functionalization by nanoparticles. Section 6 considers one particular device construction: A foil that is suitable for glass lamination and which, in the author's view, holds particular promise for low-cost large-area implementation of EC smart windows. Device data are presented, and a discussion is given of quality assessment by use of 1/f noise. The “battery-type” EC device covered in the major part of this critical review is not the only alternative, and Section 7 consists of brief discussions of a number of more or less advanced alternatives such as metal hydrides, suspended particle devices, polymer-dispersed liquid crystals, reversible electroplating, and plasmonic electrochromism based on transparent conducting oxide nanoparticles. Finally, Section 8 provides a brief summary and outlook. The aim of this critical review is not only to paint a picture of the state-of-the-art for electrochromics and its applications in smart windows, but also to provide ample references to current literature of particular relevance and thereby, hopefully, an easy entrance to the research field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call