Abstract
The precipitates play a significant role in not only enhancing the strength, but also maintaining the high toughness in alloys. However, the interactions of the nanoscale precipitates with dislocations in the high entropy alloys (HEAs) are difficult to observe directly by in-situ TEM experiments due to the limits of the resolution and time. Here, using atomic simulations we report the synergistic strengthening of the coherent precipitate and atomic-scale lattice distortion in the HEAs at cryogenic/elevated temperatures. The effects of temperature, chemical disorder, precipitate spacing, precipitate size, elemental segregation, and dislocation-cutting number on the critical stress for the dislocation to overcome a row of precipitates are studied. A random stacking fault energy landscape along the slip plane, the lattice distortion at different temperatures, and the interface/surface energy at various crystallographic orientations are obtained. Compared with the traditional metals and alloys, HEAs have the severe atomic-scale lattice distortions to generate the local high tensile/compressive stress fields. This complex stress causes the dislocation line to bend, and thus improves the dislocation slip resistance, resulting in the strong solid-solution strengthening. The stacking fault strengthening induced by the obvious difference of the stacking fault energies between the HEA matrix and precipitate (within the inner of the HEA matrix), and the formation of the antiphase domain boundary contribute to the high strength. The precipitate embedded by the solute atoms produces the strong lattice distortion to enhance the dislocation slip resistance at high temperatures. Hence, the current results provide the mechanistic insight into the phenomenon that the coherent precipitate combined with the severe atomic-scale lattice distortion can enhance the strength at cryogenic/elevated temperatures to further broaden the scope of applications of advanced HEAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.