Abstract

ABSTRACT Outflows driven by active galactic nuclei (AGNs) are often invoked as agents of the long-sought AGN feedback. Yet, characterizing and quantifying the impact on their host galaxies has been challenging. We present Gemini Multi-Object Spectrograph integral field unit data of six local (z < 0.1 ?> ) and luminous (L [ O III ] > 10 42 ?> erg s−1) type 2 AGNs. In the first of a series of papers, we investigate the kinematics and constrain the size of the outflows. The ionized gas kinematics can be described as a superposition of a gravitational component that follows the stellar motion and an outflow-driven component that shows large velocity (up to 600 km s−1) and large velocity dispersion (up to 800 km s−1). Using the spatially resolved measurements of the gas, we kinematically measure the size of the outflow, which is found to be between 1.3 and 2.1 kpc. Owing to the lack of a detailed kinematic analysis, previous outflow studies likely overestimate their size by up to more than a factor of two, depending on how the size is estimated and whether the [O iii] or Hα emission line is used. The relatively small size of the outflows for all six of our objects casts doubts on their potency as a mechanism for negative AGN feedback.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.