Abstract

Loss of biological connectivity increases the vulnerability of ecological dynamics, thereby affecting processes such as pollination. Therefore, it is important to understand the roles of the actors that participate in these interaction networks. Nonetheless, there is a significant oversight regarding the main actors in the pollination networks within the highly biodiverse forests of Colombia. Hence, the present study aims to evaluate the interaction patterns of a network of potential pollinators that inhabit an Andean Forest in Totoró, Cauca, Colombia. The interactions between plants and potential pollinators were recorded through direct observation in 10 transects during six field trips conducted over the course of one year. Subsequently, an interaction matrix was developed, and network metrics such as connectance, specialization, nestedness, and asymmetry of interaction strength were evaluated by applying null models. An interpolation/extrapolation curve was calculated in order to assess the representativeness of the sample. Finally, the key species of the network were identified by considering degree (k), centrality, and betweenness centrality. A total of 53 plant species and 52 potential pollinator species (including insects and birds) were recorded, with a sample coverage of 88.5%. Connectance (C = 0.19) and specialization (H2' = 0.19) were low, indicating a generalist network. Freziera canescens, Gaiadendron punctatum, Persea mutisii, Bombus rubicundus, Heliangelus exortis, Chironomus sp., and Metallura tyrianthina were identified as the key species that contribute to a more cohesive network structure. The present study characterized the structure of the plant-pollinator network in a highly diverse Andean forest in Colombia. It is evident that insects are the largest group of pollinators; however, it is interesting to note that birds form a different module that specializes in pollinating a specific group of plants. On the other hand, the diversity and generality of the species found suggest that the network may be robust against chains of extinction. Nevertheless, the presence of certain introduced species, such as Apis mellifera, and the rapid changes in vegetation cover may affect the dynamics of this mutualistic network. So, it is imperative to apply restoration and conservation strategies to these ecosystems in order to enhance plant-animal interactions and prevent the loss of taxonomical and functional diversity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.