Abstract

Bismuth vanadate (BiVO4) has been widely investigated as a photocatalyst or photoanode for solar water splitting, but its activity is hindered by inefficient cocatalysts and limited understanding of the underlying mechanism. Here we demonstrate significantly enhanced water oxidation on the particulate BiVO4 photocatalyst via in situ facet-selective photodeposition of dual-cocatalysts that exist separately as metallic Ir nanoparticles and nanocomposite of FeOOH and CoOOH (denoted as FeCoOx), as revealed by advanced techniques. The mechanism of water oxidation promoted by the dual-cocatalysts is experimentally and theoretically unraveled, and mainly ascribed to the synergistic effect of the spatially separated dual-cocatalysts (Ir, FeCoOx) on both interface charge separation and surface catalysis. Combined with the H2-evolving photocatalysts, we finally construct a Z-scheme overall water splitting system using [Fe(CN)6]3−/4− as the redox mediator, whose apparent quantum efficiency at 420 nm and solar-to-hydrogen conversion efficiency are optimized to be 12.3% and 0.6%, respectively.

Highlights

  • Bismuth vanadate (BiVO4) has been widely investigated as a photocatalyst or photoanode for solar water splitting, but its activity is hindered by inefficient cocatalysts and limited understanding of the underlying mechanism

  • Our previous work revealed that the spatial separation of photogenerated electrons and holes can be achieved on the anisotropic facets of BiVO432, based on which reduction and oxidation cocatalysts are selectively deposited on different facets to remarkably promote its water oxidation and the efficiency of overall water splitting (OWS) under visible light[16]

  • BiVO4 photocatalyst has been widely investigated for the assembly of artificial Z-scheme OWS systems, the apparent quantum efficiency (AQE) and STH conversion efficiency achieved so far are still considerably below what is expected

Read more

Summary

Introduction

Bismuth vanadate (BiVO4) has been widely investigated as a photocatalyst or photoanode for solar water splitting, but its activity is hindered by inefficient cocatalysts and limited understanding of the underlying mechanism. Owing to its advantages, such as efficient light absorption in the visible light region, good carrier mobility, controllable exposed facets, and non-toxic properties, BiVO4 semiconductor has been widely and successfully employed as the water oxidation photocatalyst for the assembly of Z-scheme OWS systems using solid conductor (i.e., Au, reduced graphene oxide) or redox couple (i.e., Fe3+/2+, [Fe(CN)6]3−/4−) as electron mediator[15,16,29,30,31]. BiVO4 photocatalyst has been widely investigated for the assembly of artificial Z-scheme OWS systems, the apparent quantum efficiency (AQE) and STH conversion efficiency achieved so far are still considerably below what is expected This is mainly due to the shortage of effective cocatalyst regulation and the lack of in-depth understanding of the microscopic mechanisms behind it[33,34]. For the assembly of the redox couple-mediated Z-scheme OWS system shown in Fig. 1, the loading of effective cocatalysts is extremely important for the acceleration of interfacial electron transfer between the

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.