Abstract

Revealing the presence of magnetic octupole order and associated octupole fluctuations in solids is a highly challenging task due to the lack of simple external fields that can couple to magnetic octupoles. Here, we demonstrate a methodology for probing the magnetic octupole susceptibility of a candidate material, PrV2Al20, using a product of magnetic field Hi and shear strain ϵjk as a composite effective field, while employing an adiabatic elastocaloric effect to probe the response. We observe Curie-Weiss behavior in the obtained octupolar susceptibility down to approximately 3 K. Although octupole order does not appear to be the leading multipolar channel in PrV2Al20, our results nevertheless reveal the presence of strong magnetic octupole fluctuations and hence demonstrate that octupole order is at least a competing state. More broadly, our results highlight how anisotropic strain can be combined with magnetic fields to probe elusive ‘hidden’ electronic orders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.