Abstract
Contemporary research on Greenland surface mass balance (SMB) is largely focused on the characteristics of decadal or longer trends, periodic oscillations, and acceleration. However, the specific components of the SMB such as snowfall (SF), rainfall (RF) and runoff (RU), and their corresponding temporal and spatial variability remain poorly understood. Here, we explore the respective contributions of SF, RF, and RU to the seasonal and transient crustal deformations of Greenland during the past two decades using GPS network and satellite gravimetry (GRACE) datasets, and regional climate model output. Our study unraveled that the largest annual vertical displacement caused by precipitations is in southeastern Greenland, reaching 7.27 mm. The largest surface displacement caused by RU is in western Greenland, reaching 19.82 mm. Ice mass gain/loss in Greenland shows a clear correlation between latitude and temperature, with greater variations in the south compared to the north. The transient deformation signals in Greenland mainly manifested in terms of abrupt subsidence in 2010, followed by uplift in 2014. The 2014 uplift can mainly be attributable to the combined effect of SF, RF, and RU. The largest transient signal occurs in the southeast subregions, with peak-to-peak amplitude exceeding 10 mm. Transient crustal deformation is mainly caused by precipitation in southeastern Greenland, while the contribution of RU dominates most of the time and in most subregions. We find that even though RF is increasing due to an increasingly warmer climate, its effect on SMB is still negligible, when compared with SF and RU. In some subregions and some periods, SF could become the primary contributor to transient SMB variations in Greenland.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have