Abstract

Abstract Crowding, the impairment of target discrimination in clutter, is the standard situation in vision. Traditionally, crowding is explained with (feedforward) models, in which only neighboring elements interact, leading to a “bottleneck” at the earliest stages of vision. It is with this implicit prior that most functional magnetic resonance imaging (fMRI) studies approach the identification of the “neural locus” of crowding, searching for the earliest visual area in which the blood-oxygenation-level-dependent (BOLD) signal is suppressed under crowded conditions. Using this classic approach, we replicated previous findings of crowding-related BOLD suppression starting in V2 and increasing up the visual hierarchy. Surprisingly, under conditions of uncrowding, in which adding flankers improves performance, the BOLD signal was further suppressed. This suggests an important role for top-down connections, which is in line with global models of crowding. To discriminate between various possible models, we used dynamic causal modeling (DCM). We show that recurrent interactions between all visual areas, including higher-level areas like V4 and the lateral occipital complex (LOC), are crucial in crowding and uncrowding. Our results explain the discrepancies in previous findings: in a recurrent visual hierarchy, the crowding effect can theoretically be detected at any stage. Beyond crowding, we demonstrate the need for models like DCM to understand the complex recurrent processing which most likely underlies human perception in general.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.