Abstract

Contrast processing is suggested to interact with eye growth and myopia development. A novel contrast-reducing myopia control lens design decreases image contrast and was shown to slow myopia progression. Limited insights exist regarding neural visual processing following adaptation to image contrast reduction. This study investigated foveal neural contrast sensitivity in 29 young adults following a 30-minute adaptation to scattering using a Bangerter occlusion foil 0.8, +0.5-diopter defocus, and a clear lens control condition. Neural contrast sensitivity at its peak sensitivity of 6 cycles per degree was assessed before and after adaptation to the lens conditions, employing a unique interferometric system. Pre-adaptation measurements were averaged from six replicates and post-adaptation measurements by the first and last three of six replicates. The change in neural contrast sensitivity was largest for scattering across the first and last three post-adaptation measurements (+0.05±0.01logCS and +0.04±0.01logCS, respectively) compared with control and defocus (all +0.03±0.01logCS). For scattering, the observed increase of neural contrast sensitivity within the first three measurements differed significantly from the pre-adaptation baseline (p = 0.04) and was significantly higher compared with the control condition (p = 0.04). The sensitivity increases in the control and defocus conditions were not significant (all p > 0.05). As the adaptation effect diminished, no significant differences were found from baseline or between the conditions in the last three measurements (all p > 0.05). When post-adaptation neural contrast sensitivities were clustered into 25-second sequences, a significant effect was observed between the conditions, with only a significant relevant effect between control and scattering at 25 seconds (p = 0.04) and no further significant effects (all p > 0.05). The alteration in neural contrast sensitivity at peak sensitivity was most pronounced following adaptation to the scattering condition compared with defocus and control, suggesting that induced scattering might be considered for myopia control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.