Abstract

The gut microbiota (GM) communicates with the brain via biochemical signaling constituting the gut–brain axis, which significantly regulates the body’s physiological processes. The GM dysbiosis can impact the digestive system and the functioning of the central nervous system (CNS) linked to the onset of neurodegenerative diseases. In this review, the scientific data compiled from diverse sources primarily emphasize the neuropathological characteristics linked to the accumulation of modified insoluble proteins (such as β-Amyloid peptides and hyperphosphorylated tau proteins) in Alzheimer’s Disease (AD) and the potential impact of gut microbiota (GM) on AD susceptibility or resilience. The specific GM profile of human beings may serve as an essential tool for preventing or progressing neurodegenerative diseases like AD. This review focuses mainly on the effect of gut microfauna on the gut–brain axis in the onset and progression of AD. The GM produces various bioactive molecules that may serve as proinflammatory or anti-inflammatory signaling, contributing directly or indirectly to the repression or progression of neurodegenerative disorders by modulating the response of the brain axis. Human studies must focus on further understanding the gut–brain axis and venture to clarify microbiota-based therapeutic strategies for AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.