Abstract

Wildfire events have recently shown a rapid increase in frequency and scale due to the warmer present-day climate; however, their potential effects on the cryosphere are difficult to assess. Catastrophic wildfires in Australia during 2019–2020 emitted large amounts of light-absorbing particles (LAPs) to the atmosphere. Satellite observations indicate that these LAPs caused unprecedented snow-darkening of glaciers in New Zealand through long-range transport and deposition, with their effects lasting for up to three months in January–March 2020, influencing >90% of total glacier/snow and leading to a mean broadband snow-reflectance reduction of 0.08 ± 0.03. This snow darkening accelerated snowmelt by ~0.41 ± 0.2 cm day–1 during the southern summer, equivalent to that caused by a ~1.8 °C increase in air temperature. This indicates the significant impact of the 2019–2020 Australian wildfires on the hydrologic cycle in New Zealand, exceeding that of the local climate warming of ~1.5 °C since the preindustrial period. Wildfire-induced snow darkening is not limited to New Zealand. Future projections of wildfire incidence indicate widespread effects of snow darkening on the global cryosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.