Abstract

We present optical photometric and spectroscopic observations of the 02es-like type Ia supernova (SN) 2022ywc. The transient occurred in the outskirts of an elliptical host galaxy and showed a striking double-peaked light curve with an early excess feature detected in the ATLAS orange and cyan bands. The early excess is remarkably luminous with an absolute magnitude ∼ − 19, comparable in luminosity to the subsequent radioactively driven second peak. The spectra resemble the hybrid 02es-like SN 2016jhr, which is considered to be a helium shell detonation candidate. We investigate different physical mechanisms that could power such a prominent early excess and rule out massive helium shell detonation, surface 56Ni distribution, and ejecta–companion interaction. We conclude that SN ejecta interacting with circumstellar material (CSM) is the most viable scenario. Semianalytical modeling with MOSFiT indicates that SN ejecta interacting with ∼0.05 M ⊙ of CSM at a distance of ∼1014 cm can explain the extraordinary light curve. A double-degenerate scenario may explain the origin of the CSM, by tidally stripped material from either the secondary white dwarf or disk-originated matter launched along polar axes following the disruption and accretion of the secondary white dwarf. A nonspherical CSM configuration could suggest that a small fraction of 02es-like events viewed along a favorable line of sight may be expected to display a very conspicuous early excess like SN 2022ywc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call