Abstract

Optical broadband (UBVRI) photometric and low-resolution spectroscopic observations of the type II-P supernova (SN) ASASSN-14dq are presented. ASASSN-14dq exploded in a low-luminosity/metallicity host galaxy UGC 11860, the signatures of which are present as weak iron lines in the photospheric phase spectra. The SN has a plateau duration of $\sim\,$90 d, with a plateau decline rate of 1.38 $\rm mag\ (100 d)^{-1}$ in V-band which is higher than most type II-P SNe. ASASSN-14dq is a luminous type II-P SN with a peak $V$-band absolute magnitude of -17.7$\,\pm\,$0.2 mag. The light curve of ASASSN-14dq indicates it to be a fast-declining type II-P SN, making it a transitional event between the type II-P and II-L SNe. The empirical relation between the steepness parameter and $\rm ^{56}Ni$ mass for type II SNe was rebuilt with the help of well-sampled light curves from the literature. A $\rm ^{56}Ni$ mass of $\sim\,$0.029 M$_{\odot}$ was estimated for ASASSN-14dq, which is slightly lower than the expected $\rm ^{56}Ni$ mass for a luminous type II-P SN. Using analytical light curve modelling, a progenitor radius of $\rm \sim3.6\times10^{13}$ cm, an ejecta mass of $\rm \sim10\ M_{\odot}$ and a total energy of $\rm \sim\,1.8\times 10^{51}$ ergs was estimated for this event. The photospheric velocity evolution of ASASSN-14dq resembles a type II-P SN, but the Balmer features (H$\alpha$ and H$\beta$) show relatively slow velocity evolution. The high-velocity H$\alpha$ feature in the plateau phase, the asymmetric H$\alpha$ emission line profile in the nebular phase and the inferred outburst parameters indicate an interaction of the SN ejecta with the circumstellar material (CSM).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call